Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0429622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140373

RESUMO

The increase in antibiotic-resistant avian-pathogenic Escherichia coli (APEC), the causative agent of colibacillosis in poultry, warrants urgent research and the development of alternative therapies. This study describes the isolation and characterization of 19 genetically diverse, lytic coliphages, 8 of which were tested in combination for their efficacy in controlling in ovo APEC infections. Genome homology analysis revealed that the phages belong to nine different genera, one of them being a novel genus (Nouzillyvirus). One phage, REC, was derived from a recombination event between two Phapecoctavirus phages (ESCO5 and ESCO37) isolated in this study. Twenty-six of the 30 APEC strains tested were lysed by at least one phage. Phages exhibited varying infectious capacities, with narrow to broad host ranges. The broad host range of some phages could be partially explained by the presence of receptor-binding protein carrying a polysaccharidase domain. To demonstrate their therapeutic potential, a phage cocktail consisting of eight phages belonging to eight different genera was tested against BEN4358, an APEC O2 strain. In vitro, this phage cocktail fully inhibited the growth of BEN4358. In a chicken lethality embryo assay, the phage cocktail enabled 90% of phage-treated embryos to survive infection with BEN4358, compared with 0% of nontreated embryos, indicating that these novel phages are good candidates to successfully treat colibacillosis in poultry. IMPORTANCE Colibacillosis, the most common bacterial disease affecting poultry, is mainly treated by antibiotics. Due to the increased prevalence of multidrug-resistant avian-pathogenic Escherichia coli, there is an urgent need to assess the efficacy of alternatives to antibiotherapy, such as phage therapy. Here, we have isolated and characterized 19 coliphages that belong to nine phage genera. We showed that a combination of 8 of these phages was efficacious in vitro to control the growth of a clinical isolate of E. coli. Used in ovo, this phage combination allowed embryos to survive APEC infection. Thus, this phage combination represents a promising treatment for avian colibacillosis.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Bacteriófagos/genética , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Colífagos/genética , Galinhas , Aves Domésticas , Doenças das Aves Domésticas/terapia , Doenças das Aves Domésticas/microbiologia
2.
Pathogens ; 11(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36014993

RESUMO

The Bacillus cereus (B. cereus) group is a widespread foodborne pathogen with a persistent ability to form biofilm, and with inherent resistance to traditional treatment in the food industry. Bacteriophages are a promising biocontrol agent that could be applied to prevent or eliminate biofilms formation. We have described, in this study, the isolation from sewage samples and preliminary characterization of bacteriophages that are active against the B. cereus group. The effectiveness of phage treatment for reducing B. cereus attachment and biofilms on stainless steel surfaces has been also assessed using three incubation periods at different titrations of each phage. Out of 62 phages isolated, seven showed broad-spectrum lytic action against 174 B. cereus isolates. All selected phages appeared to be of the Siphoviridae family. SDS-PAGE proved that two phages have a similar profile, while the remainder are distinct. All isolated phages have the same restriction pattern, with an estimated genome size of around 37 kb. The isolated bacteriophages have been shown to be effective in preventing biofilm formation. Reductions of up to 1.5 log10 UFC/cm2 have been achieved, compared to the untreated biofilms. Curative treatment reduced the bacterial density by 0.5 log10 UFC/cm2. These results support the prospect of using these phages as a potential alternative strategy for controlling biofilms in food systems.

3.
J Microbiol Methods ; 180: 106106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248180

RESUMO

Aquaculture is a fast growing industry with its development hampered by bacterial diseases. Vibriosis caused by Harveyi clade strains is known for causing heavy loss especially in shrimp aquaculture farms. For farm treatment and pathogen spread management, veterinarians and researchers need reliable bacterial identification tools. A range of identification methods have been presented for Vibrio spp. in recent literature but little feedback on their performance have been made available to this day. This study aims at comparing Vibrio spp. identification methods and providing guidance on their use. Fifty farms were sampled and bacterial colonies were isolated using specific culture media before microscopic analysis and genomic profiling using ERIC-PCR. A preliminary identification step was carried out using MALDI-ToF mass spectrometry. Four methods were compared for strain identification on 14 newly isolated Harveyi clade Vibrio spp. strains: whole genome sequencing (digital DNA DNA Hybridization (dDDH)), 5 MLSA schemes, ferric uptake regulation (fur) and lecithin-dependent haemolysin (ldh) single gene based identification methods. Apart from dDDH which is a reference method, no technique could identify all the isolates to the species level. The other tested techniques allowed a faster, cheaper but sub genus clade identification which can be interesting when absolute precision is not required. In this regard, MALDI-ToF and fur based identification seemed especially promising.


Assuntos
Aquicultura , Técnicas Bacteriológicas/métodos , Vibrioses/diagnóstico , Vibrioses/microbiologia , Vibrio/genética , Vibrio/isolamento & purificação , Animais , Brasil , DNA Bacteriano/genética , Genes Bacterianos/genética , Proteínas Hemolisinas/genética , Filogenia , Reação em Cadeia da Polimerase/métodos , Vibrio/classificação , Vibrioses/veterinária , Sequenciamento Completo do Genoma
4.
BMC Microbiol ; 19(1): 196, 2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31445510

RESUMO

BACKGROUND: Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION: Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/isolamento & purificação , Microbiologia de Alimentos , Bacillus cereus/classificação , Bacillus cereus/genética , Proteínas de Bactérias/genética , Células CACO-2 , Enterotoxinas/genética , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Filogenia , Tunísia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA